Hierarchical Optimistic Region Selection driven by Curiosity.

2012, Discussing articles

Odalric-Ambrym Maillard.
In Proceedings of the 25th conference on advances in Neural Information Processing Systems, NIPS ’12, 2012.



This paper aims to take a step forwards making the term ”intrinsic motivation” from reinforcement learning theoretically well founded, focusing on curiosity-driven learning. To that end, we consider the setting where, a fixed partition \P of a continuous space \X being given, and a process \nu defined on \X being unknown, we are asked to sequentially decide which cell of the partition to select as well as where to sample \nu in that cell, in order to minimize a loss function that is inspired from previous work on curiosity-driven learning. The loss on each cell consists of one term measuring a simple worst case quadratic sampling error, and a penalty term proportional to the range of the variance in that cell. The corresponding problem formulation extends the setting known as active learning for multi-armed bandits to the case when each arm is a continuous region, and we show how an adaptation of recent algorithms for that problem and of hierarchical optimistic sampling algorithms for optimization can be used in order to solve this problem. The resulting procedure, called Hierarchical Optimistic Region SElection driven by Curiosity (HORSE.C) is provided together with a finite-time regret analysis.

You can dowload the paper from the NIPS website (here) or from the HAL online open depository* (here).

title ={Hierarchical Optimistic Region Selection driven by Curiosity},
author={Odalric-Ambrym Maillard},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger},
pages = {1457–1465},
year = {2012}

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s