Hierarchical Optimistic Region Selection driven by Curiosity.

2012, Discussing articles

Odalric-Ambrym Maillard.
In Proceedings of the 25th conference on advances in Neural Information Processing Systems, NIPS ’12, 2012.

[Download]

Abstract:

This paper aims to take a step forwards making the term ”intrinsic motivation” from reinforcement learning theoretically well founded, focusing on curiosity-driven learning. To that end, we consider the setting where, a fixed partition \P of a continuous space \X being given, and a process \nu defined on \X being unknown, we are asked to sequentially decide which cell of the partition to select as well as where to sample \nu in that cell, in order to minimize a loss function that is inspired from previous work on curiosity-driven learning. The loss on each cell consists of one term measuring a simple worst case quadratic sampling error, and a penalty term proportional to the range of the variance in that cell. The corresponding problem formulation extends the setting known as active learning for multi-armed bandits to the case when each arm is a continuous region, and we show how an adaptation of recent algorithms for that problem and of hierarchical optimistic sampling algorithms for optimization can be used in order to solve this problem. The resulting procedure, called Hierarchical Optimistic Region SElection driven by Curiosity (HORSE.C) is provided together with a finite-time regret analysis.

You can dowload the paper from the NIPS website (here) or from the HAL online open depository* (here).

Bibtex:
@inproceedings{Maillard12,
title ={Hierarchical Optimistic Region Selection driven by Curiosity},
author={Odalric-Ambrym Maillard},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger},
pages = {1457–1465},
year = {2012}
}

Online allocation and homogeneous partitioning for piecewise constant mean-approximation.

2012, Discussing articles

 Alexandra Carpentier, Odalric-Ambrym Maillard.
In Proceedings of the 25th conference on advances in Neural Information Processing Systems, NIPS ’12, 2012.

[Download]

Abstract:

In the setting of active learning for the multi-armed bandit, where the goal of a learner is to estimate with equal precision the mean of a finite number of arms, recent results show that it is possible to derive strategies based on finite-time confidence bounds that are competitive with the best possible strategy. We here consider an extension of this problem to the case when the arms are the cells of a finite partition P of a continuous sampling space X \subset \Real^d. Our goal is now to build a piecewise constant approximation of a noisy function (where each piece is one region of P and P is fixed beforehand) in order to maintain the local quadratic error of approximation on each cell equally low. Although this extension is not trivial, we show that a simple algorithm based on upper confidence bounds can be proved to be adaptive to the function itself in a near-optimal way, when |P| is chosen to be of minimax-optimal order on the class of \alpha-Hölder functions.

You can dowload the paper from the NIPS website (here) or from the HAL online open depository* (here).

Bibtex:
@inproceedings{CarpentierMaillard12,
title = {Online allocation and homogeneous partitioning for piecewise constant mean-approximation.},
author = {Carpentier, Alexandra and Maillard, Odalric-Ambrym},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger},
pages = {1970-1978},
year = {2012}
}