Selecting Near-Optimal Approximate State Representations in Reinforcement Learning.

2014, Discussing articles

Ronald Ortner, Odalric-Ambrym Maillard, Daniil Ryabko.
In Algorithmic Learning Theory, 2014.

[Download]

Abstract:
We consider a reinforcement learning setting introduced in (Maillard et al., NIPS 2011) where the learner does not have explicit access to the states of the underlying Markov decision process (MDP). Instead, she has access to several models that map histories of past interactions to states. Here we improve over known regret bounds in this setting, and more importantly generalize to the case where the models given to the learner do not contain a true model resulting in an MDP representation but only approximations of it. We also give improved error bounds for state aggregation

You can dowload the paper from the  ALT Website (here) or from the HAL online open depository* (here).

Bibtex:
@inproceedings{ortner2014selecting,
  title={Selecting near-optimal approximate state representations in reinforcement learning},
  author={Ortner, Ronald and Maillard, Odalric-Ambrym and Ryabko, Daniil},
  booktitle={Algorithmic Learning Theory},
  pages={140--154},
  year={2014},
  organization={Springer}
}
Related Publications:
Competing with an infinite set of models in reinforcement learning, Phuong Nguyen, Odalric-Ambrym Maillard, Daniil Ryabko, and Ronald Ortner, in Proceedings of the International Conference on Artificial Intelligence and Statistics (AI&STATS), volume 31 of JMLR W&CP , pages 463–471, Arizona, USA, 2013.

Optimal regret bounds for selecting the state representation in reinforcement learning.
Odalric-Ambrym Maillard, Phuong Nguyen, Ronald Ortner, Daniil Ryabko.
In Proceedings of the 30th international conference on machine learning, ICML 2013, 2013.

Selecting the State-Representation in Reinforcement Learning.
Odalric-Ambrym Maillard, Daniil Ryabko, Rémi Munos.
In Proceedings of the 24th conference on advances in Neural Information Processing Systems, NIPS ’11, pages 2627–2635, 2011.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s